April 2000 Revised May 2003

NC7SZ57 • NC7SZ58 TinyLogic® UHS Universal Configurable 2-Input Logic Gates

General Description

Ordering Code:

The NC7SZ57 and the NC7SZ58 are Universal Configurable 2-Input Logic Gates. Each device is capable of being configured for 1 of 5 unique 2-input logic functions. Any possible 2-input combinatorial logic function can be implemented as shown in the Function Selection Table. Device functionality is selected by how the device is wired at the board level. Figure 1 through Figure 10 illustrate how to connect the NC7SZ57 and NC7SZ58 respectively for the desired logic function. All inputs have been implemented with hysteresis.

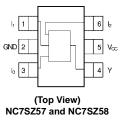
The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The input and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 5.5V independent of V_{CC} operating range.

Features

- Space saving SC70-6 lead surface mount package
- Ultra small MicroPak[™] leadless package
- Ultra High Speed
- Capable of implementing any 2-input logic function
- Typical usage replaces 2 TinyLogic® gate devices
- Reduces part counts in inventory
- Broad V_{CC} operating range: 1.65V to 5.5V
- Power down high impedance input/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

_				
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ57P6X	MAA06A	Z57	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SZ58P6X	MAA06A	Z58	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SZ57L6X	MAC06A	КК	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel
NC7SZ58L6X	MAC06A	LL	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

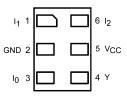

SEMICONDUCTOR IM

NC7SZ57 • NC7SZ58

Pin Name Description Data Inputs l₀, l₁, l₂ Output Υ **Function Table** Inputs NC7SZ57 NC7SZ58 $Y = (I_0) \bullet (I_2) + (I_1) \bullet (I_2) \quad Y = (I_0) \bullet (I_2) + (I_1) \bullet (I_2)$ l₂ \mathbf{I}_1 I₀ L L Н L L L L Н L Н Н L Н L L L Н L Н Н Н Н L L L н Н Н L L Н Н L L Н Н Н Н Н L H = HIGH Logic Level L = LOW Logic Level

Connection Diagrams

Pin Assignments for SC70


Pin One Orientation Diagram

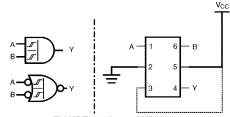
Pin One AAA = Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

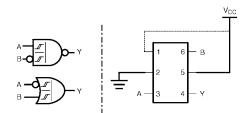
Pad Assignment for MicroPak

(Top Thru View)

1.1011 20gio 2010i 2 2011 2


Pin Descriptions

Function Selection Table


2-Input Logic Function	Device Selection	Connection Configuration		
2-Input AND	NC7SZ57	Figure 1		
2-Input AND with inverted input	NC7SZ58	Figures 7, 8		
2-Input AND with both inputs inverted	NC7SZ57	Figure 4		
2-Input NAND	NC7SZ58	Figure 6		
2-Input NAND with inverted input	NC7SZ57	Figures 2, 3		
2-Input NAND with both inputs inverted	NC7SZ58	Figure 9		
2-Input OR	NC7SZ58	Figure 9		
2-Input OR with inverted input	NC7SZ57	Figures 2, 3		
2-Input OR with both inputs inverted	NC7SZ58	Figure 6		
2-Input NOR	NC7SZ57	Figure 4		
2-Input NOR with inverted input	NC7SZ58	Figures 7, 8		
2-Input NOR with both inputs inverted	NC7SZ57	Figure 1		
2-Input XOR	NC7SZ58	Figure 10		
2-Input XNOR	NC7SZ57	Figure 5		

Logic Configurations NC7SZ57

Figure 1 through Figure 5 show the logical functions that can be implemented using the NC7SZ57. The diagrams show the DeMorgan's equivalent logic duals for a given 2-input function. Next to the logical implementation is the board level physical implementation of how the pins of the function should be connected.

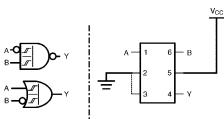


FIGURE 2. 2-Input NAND with Inverted A Input

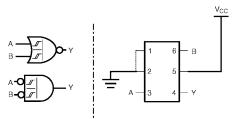
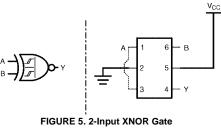
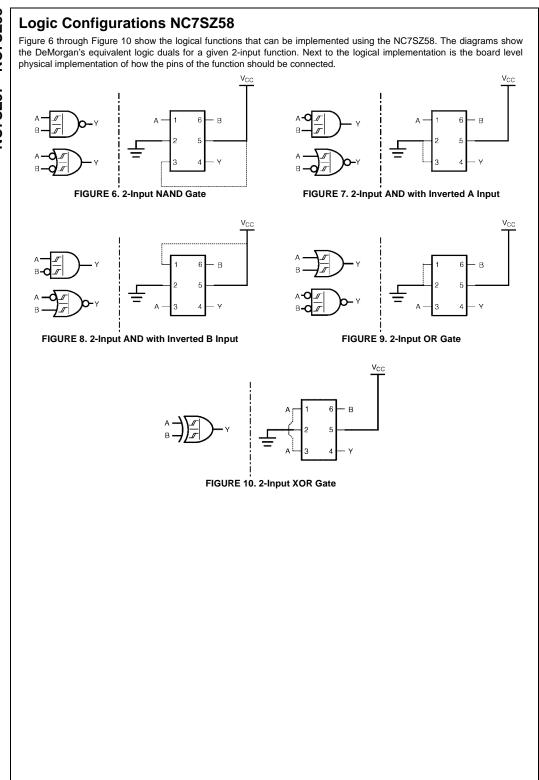




FIGURE 4. 2-Input NOR Gate

Absolute Maximum Ratings(Note 1)

	_
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
@ $V_{IN} \leq 0.5V$	–50 mA
DC Output Diode Current (I _{OK})	
@ $V_{IN} \leq -0.5V$	–50 mA
DC Output Source/Sink Current (I _{OUT})	±50 mA
DC V _{CC} or Ground Current (I_{CC} / I_{GND})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Max Junction Temperature under Bias (T_J)	150°C
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @+85°C	
SC70-6	180 mW

Recommended Operating Conditions

Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance (θ_{JA})	
SC70-6	350°C/W

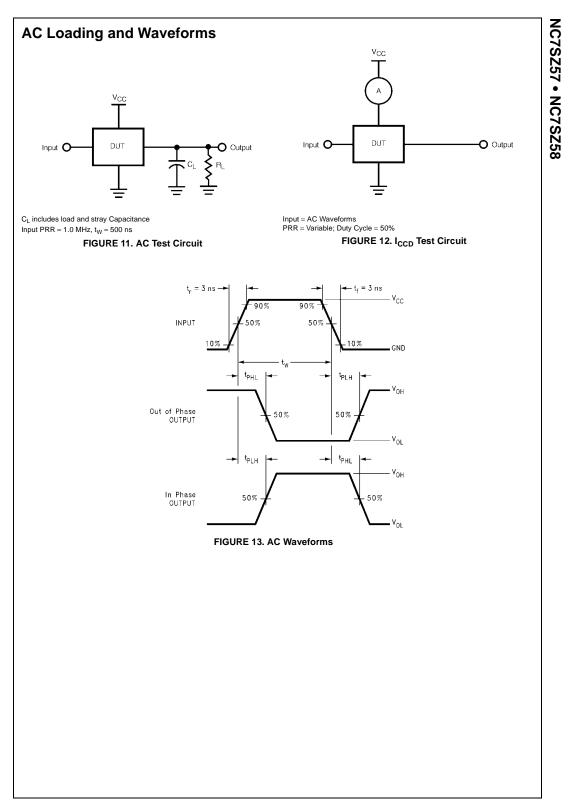
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

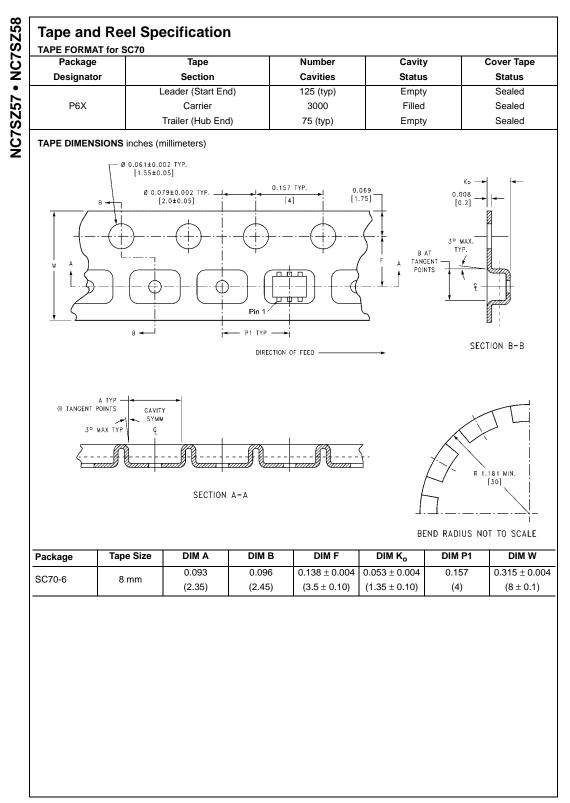
DC Electrical Characteristics

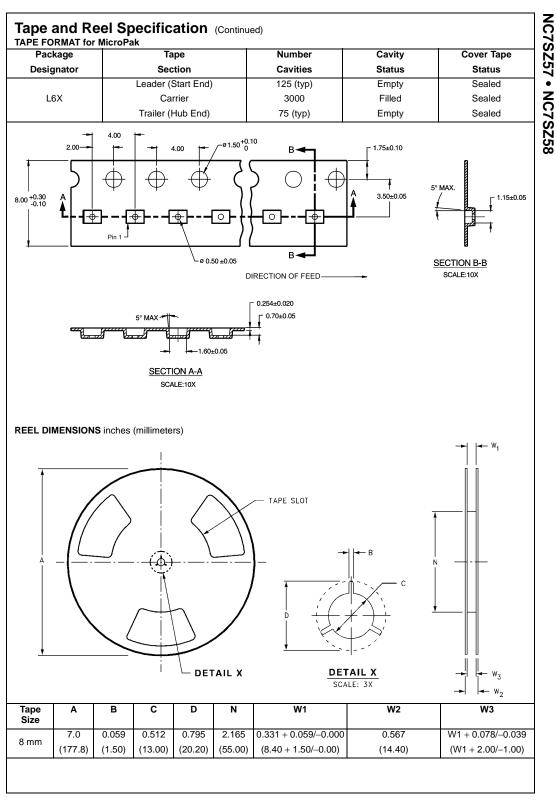
Symbol	Desemator	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^\circ$	C to +85°C	Units	Conditions		
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	
VP	Positive Threshold Voltage	1.65	0.6	0.99	1.4	0.6	1.4			
		2.3	1.0	1.39	1.8	1.0	1.8			
		3.0	1.3	1.77	2.2	1.3	2.2	V		
		4.5	1.9	2.49	3.1	1.9	3.1			
		5.5	2.2	2.95	3.6	2.2	3.6			
V _N	Negative Threshold Voltage	1.65	0.2	0.50	0.9	0.2	0.9			
		2.3	0.4	0.75	1.15	0.4	1.15			
		3.0	0.6	0.99	1.5	0.6	1.5	V		
		4.5	1.0	1.43	2.0	1.0	2.0			
		5.5	1.2	1.70	2.3	1.2	2.3			
V _H	Hysteresis Voltage	1.65	0.15	0.48	0.9	0.15	0.9			
		2.3	0.25	0.64	1.1	0.25	1.1			
		3.0	0.4	0.78	1.2	0.4	1.2	V		
		4.5	0.6	1.06	1.5	0.6	1.5			
		5.5	0.7	1.25	1.7	0.7	1.7			
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.2	2.3		2.2		V	$V_{IN}=V_{IH}$	$I_{OH} = -100 \ \mu A$
		3.0	2.9	3.0		2.9		v	or V _{IL}	
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9			$V_{IN} = V_{IH}$	$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		V	or V _{IL}	$I_{OH} = -16 \text{ mA}$
		3.0	2.3	3.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.10		0.10			
		2.3		0.0	0.10		0.10	V	$V_{\text{IN}} = V_{\text{IH}}$	$I_{OL} = 100 \; \mu A$
		3.0		0.0	0.10		0.10	v	or V _{IL}	
		4.5		0.0	0.10		0.10			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3		$V_{IN} = V_{IH}$	$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V	or V _{IL}	$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0–5.5			±0.1		±1	μA	V _{IN} = 5.5V,	GND

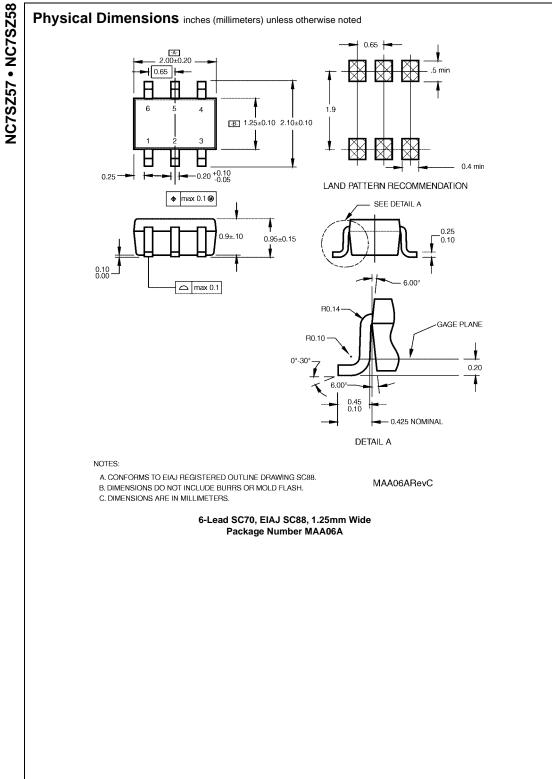
NC7SZ57 • NC7SZ58

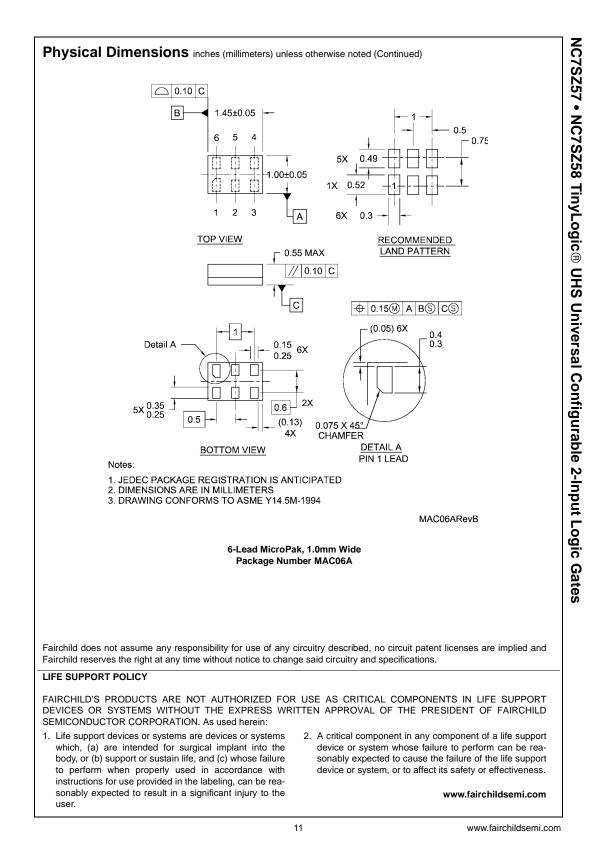
DC Electrical Characteristics (Continued)


Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	Units	Conditions	
Gymbol	i urumeter	(V)	Min	Тур	Мах	Min	Max	onita	Conditions
I _{OFF}	Power Off Leakage Current	0.0			1		10	μA	V_{IN} or $V_{OUT} = 5.5V$
I _{CC}	Quiescent Supply Current	1.65–5.5			1		10	μA	$V_{IN} = 5.5V, GND$


AC Electrical Characteristics


Symbol	Parameter	V _{cc}	T _A = +25°C			$T_{A}=-40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Fig. No.
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	conunions	Fig. No.
t _{PLH}	Propagation Delay In to Y	1.8 ± 0.15	3.0	8	14.0	3.0	14.5			
t _{PHL}		2.5 ± 0.2	1.5	4.9	8.0	1.5	8.5	ns	$C_L = 15 \text{ pF}$	Figures
		3.3 ± 0.3	1.2	3.7	5.3	1.2	5.7	115	$R_L = 1 M\Omega$	11, 13
		5.0 ± 0.5	0.8	2.8	4.3	0.8	4.6			
t _{PLH}	Propagation Delay In to Y	3.3 ± 0.3	1.5	4.2	6.0	1.5	6.5	ns	$C_L = 50 pF$	Figures
t _{PHL}		5.0 ± 0.5	1.0	3.4	4.9	1.0	5.3	115	$R_L = 500\Omega$	11, 13
CIN	Input Capacitance	0		2				pF		
C _{PD}	Power Dissipation	3.3		14				5 E	(Note 2)	Figure 12
	Capacitance	5.0		17				pF		Figure 12


Note 2: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 12) C_{PD} is related to I_{CCD} dynamic operatic current by the expression:


 $I_{CCD} = (C_{PD})(V_{CC})(f_{in}) + (I_{CC}static).$

